Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7555, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985764

RESUMO

Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone. Single cell RNA-sequencing identifies an angiogenic infarct macrophage population with high Itga5 expression. The angiogenic effects of integrin α5 in macrophages involve upregulation of Vascular Endothelial Growth Factor A. RNA-sequencing of the macrophage transcriptome in vivo and in vitro followed by bioinformatic analysis identifies several intracellular kinases as potential downstream targets of integrin α5. Neutralization assays demonstrate that the angiogenic actions of integrin α5-stimulated macrophages involve activation of Focal Adhesion Kinase and Phosphoinositide 3 Kinase cascades.


Assuntos
Integrina alfa5 , Infarto do Miocárdio , Camundongos , Animais , Integrina alfa5/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , RNA/metabolismo
2.
J Mol Cell Cardiol ; 184: 1-12, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37709008

RESUMO

At least seven cell death programs are activated during myocardial infarction (MI), but which are most important in causing heart damage is not understood. Two of these programs are mitochondrial-dependent necrosis and apoptosis. The canonical function of the pro-cell death BCL-2 family proteins BAX and BAK is to mediate permeabilization of the outer mitochondrial membrane during apoptosis allowing apoptogen release. BAX has also been shown to sensitize cells to mitochondrial-dependent necrosis, although the underlying mechanisms remain ill-defined. Genetic deletion of Bax or both Bax and Bak in mice reduces infarct size following reperfused myocardial infarction (MI/R), but the contribution of BAK itself to cardiomyocyte apoptosis and necrosis and infarction has not been investigated. In this study, we use Bak-deficient mice and isolated adult cardiomyocytes to delineate the role of BAK in the pathogenesis of infarct generation and post-infarct remodeling during MI/R and non-reperfused MI. Generalized homozygous deletion of Bak reduced infarct size ∼50% in MI/R in vivo, which was attributable primarily to decreases in necrosis. Protection from necrosis was also observed in BAK-deficient isolated cardiomyocytes suggesting that the cardioprotection from BAK loss in vivo is at least partially cardiomyocyte-autonomous. Interestingly, heterozygous Bak deletion, in which the heart still retains ∼28% of wild type BAK levels, reduced infarct size to a similar extent as complete BAK absence. In contrast to MI/R, homozygous Bak deletion did not attenuate acute infarct size or long-term scar size, post-infarct remodeling, cardiac dysfunction, or mortality in non-reperfused MI. We conclude that BAK contributes significantly to cardiomyocyte necrosis and infarct generation during MI/R, while its absence does not appear to impact the pathogenesis of non-reperfused MI. These observations suggest BAK may be a therapeutic target for MI/R and that even partial pharmacological antagonism may provide benefit.


Assuntos
Infarto do Miocárdio , Proteína Killer-Antagonista Homóloga a bcl-2 , Animais , Camundongos , Apoptose/fisiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Homozigoto , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Necrose/genética , Deleção de Sequência , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
3.
Circulation ; 148(11): 882-898, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350296

RESUMO

BACKGROUND: Pericytes have been implicated in tissue repair, remodeling, and fibrosis. Although the mammalian heart contains abundant pericytes, their fate and involvement in myocardial disease remains unknown. METHODS: We used NG2Dsred;PDGFRαEGFP pericyte:fibroblast dual reporter mice and inducible NG2CreER mice to study the fate and phenotypic modulation of pericytes in myocardial infarction. The transcriptomic profile of pericyte-derived cells was studied using polymerase chain reaction arrays and single-cell RNA sequencing. The role of transforming growth factor-ß (TGF-ß) signaling in regulation of pericyte phenotype was investigated in vivo using pericyte-specific TGF-ß receptor 2 knockout mice and in vitro using cultured human placental pericytes. RESULTS: In normal hearts, neuron/glial antigen 2 (NG2) and platelet-derived growth factor receptor α (PDGFRα) identified distinct nonoverlapping populations of pericytes and fibroblasts, respectively. After infarction, a population of cells expressing both pericyte and fibroblast markers emerged. Lineage tracing demonstrated that in the infarcted region, a subpopulation of pericytes exhibited transient expression of fibroblast markers. Pericyte-derived cells accounted for ~4% of PDGFRα+ infarct fibroblasts during the proliferative phase of repair. Pericyte-derived fibroblasts were overactive, expressing higher levels of extracellular matrix genes, integrins, matricellular proteins, and growth factors, when compared with fibroblasts from other cellular sources. Another subset of pericytes contributed to infarct angiogenesis by forming a mural cell coat, stabilizing infarct neovessels. Single-cell RNA sequencing showed that NG2 lineage cells diversify after infarction and exhibit increased expression of matrix genes, and a cluster with high expression of fibroblast identity markers emerges. Trajectory analysis suggested that diversification of infarct pericytes may be driven by proliferating cells. In vitro and in vivo studies identified TGF-ß as a potentially causative mediator in fibrogenic activation of infarct pericytes. However, pericyte-specific TGF-ß receptor 2 disruption had no significant effects on infarct myofibroblast infiltration and collagen deposition. Pericyte-specific TGF-ß signaling was involved in vascular maturation, mediating formation of a mural cell coat investing infarct neovessels and protecting from dilative remodeling. CONCLUSIONS: In the healing infarct, cardiac pericytes upregulate expression of fibrosis-associated genes, exhibiting matrix-synthetic and matrix-remodeling profiles. A fraction of infarct pericytes exhibits expression of fibroblast identity markers. Pericyte-specific TGF-ß signaling plays a central role in maturation of the infarct vasculature and protects from adverse dilative remodeling, but it does not modulate fibrotic remodeling.


Assuntos
Infarto do Miocárdio , Pericitos , Gravidez , Camundongos , Feminino , Humanos , Animais , Pericitos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Placenta/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Fibrose , Camundongos Knockout , Fenótipo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Mamíferos
4.
J Am Heart Assoc ; 12(6): e027463, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36892073

RESUMO

Background Interstitial and perivascular fibrosis may contribute to diabetes-associated heart failure. Pericytes can convert to fibroblasts under conditions of stress and have been implicated in the pathogenesis of fibrotic diseases. We hypothesized that in diabetic hearts, pericytes may convert to fibroblasts, contributing to fibrosis and to the development of diastolic dysfunction. Methods and Results Using pericyte:fibroblast dual reporter (NG2Dsred [neuron-glial antigen 2 red fluorescent protein variant]; PDGFRαEGFP [platelet-derived growth factor receptor alpha enhanced green fluorescent protein]) mice in a type 2 diabetic db/db background, we found that diabetes does not significantly affect pericyte density but reduces the myocardial pericyte:fibroblast ratio. Lineage tracing using the inducible NG2CreER driver, along with reliable labeling of fibroblasts with the PDGFRα reporter system, showed no significant pericyte to fibroblast conversion in lean and db/db hearts. In addition, db/db mouse cardiac fibroblasts did not undergo myofibroblast conversion and had no significant induction of structural collagens but exhibited a matrix-preserving phenotype, associated with increased expression of antiproteases, matricellular genes, matrix cross-linking enzymes, and the fibrogenic transcription factor cMyc. In contrast, db/db mouse cardiac pericytes had increased expression of Timp3, without any changes in expression of other fibrosis-associated genes. The matrix-preserving phenotype of diabetic fibroblasts was associated with induction of genes encoding oxidative (Ptgs2/cycloxygenase-2, and Fmo2) and antioxidant proteins (Hmox1, Sod1). In vitro, high glucose partially recapitulated the in vivo changes in diabetic fibroblasts. Conclusions Diabetic fibrosis is not mediated through pericyte to fibroblast conversion but involves acquisition of a matrix-preserving fibroblast program, which is independent of myofibroblast conversion and is only partially explained by the effects of the hyperglycemic environment.


Assuntos
Diabetes Mellitus , Pericitos , Camundongos , Animais , Pericitos/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fibroblastos/metabolismo , Diabetes Mellitus/metabolismo , Fenótipo , Fibrose
5.
J Mol Cell Cardiol ; 171: 1-15, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780861

RESUMO

TGF-ßs regulate macrophage responses, by activating Smad2/3. We have previously demonstrated that macrophage-specific Smad3 stimulates phagocytosis and mediates anti-inflammatory macrophage transition in the infarcted heart. However, the role of macrophage Smad2 signaling in myocardial infarction remains unknown. We studied the role of macrophage-specific Smad2 signaling in healing mouse infarcts, and we explored the basis for the distinct effects of Smad2 and Smad3. In infarct macrophages, Smad3 activation preceded Smad2 activation. In contrast to the effects of Smad3 loss, myeloid cell-specific Smad2 disruption had no effects on mortality, ventricular dysfunction and adverse remodeling, after myocardial infarction. Macrophage Smad2 loss modestly, but transiently increased myofibroblast density in the infarct, but did not affect phagocytic removal of dead cells, macrophage infiltration, collagen deposition, and scar remodeling. In isolated macrophages, TGF-ß1, -ß2 and -ß3, activated both Smad2 and Smad3, whereas BMP6 triggered only Smad3 activation. Smad2 and Smad3 had similar patterns of nuclear translocation in response to TGF-ß1. RNA-sequencing showed that Smad3, and not Smad2, was the main mediator of transcriptional effects of TGF-ß on macrophages. Smad3 loss resulted in differential expression of genes associated with RAR/RXR signaling, cholesterol biosynthesis and lipid metabolism. In both isolated bone marrow-derived macrophages and in infarct macrophages, Smad3 mediated synthesis of Nr1d2 and Rara, two genes encoding nuclear receptors, that may be involved in regulation of their phagocytic and anti-inflammatory properties. In conclusion, the in vivo and in vitro effects of TGF-ß on macrophage function involve Smad3, and not Smad2.


Assuntos
Infarto do Miocárdio , Proteína Smad2 , Proteína Smad3 , Animais , Colesterol , Colágeno/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Fenótipo , RNA , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
FASEB J ; 36(7): e22400, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35695814

RESUMO

Smad7 restrains TGF-ß responses, and has been suggested to exert both pro- and anti-inflammatory actions that may involve effects on macrophages. Myocardial infarction triggers a macrophage-driven inflammatory response that not only plays a central role in cardiac repair, but also contributes to adverse remodeling and fibrosis. We hypothesized that macrophage Smad7 expression may regulate inflammation and fibrosis in the infarcted heart through suppression of TGF-ß responses, or via TGF-independent actions. In a mouse model of myocardial infarction, infiltration with Smad7+ macrophages peaked 7 days after coronary occlusion. Myeloid cell-specific Smad7 loss in mice had no effects on homeostatic functions and did not affect baseline macrophage gene expression. RNA-seq predicted that Smad7 may promote TREM1-mediated inflammation in infarct macrophages. However, these alterations in the transcriptional profile of macrophages were associated with a modest and transient reduction in infarct myofibroblast infiltration, and did not affect dysfunction, chamber dilation, scar remodeling, collagen deposition, and macrophage recruitment. In vitro, RNA-seq and PCR arrays showed that TGF-ß has profound effects on macrophage profile, attenuating pro-inflammatory cytokine/chemokine expression, modulating synthesis of matrix remodeling genes, inducing genes associated with sphingosine-1 phosphate activation and integrin signaling, and inhibiting cholesterol biosynthesis genes. However, Smad7 loss did not significantly affect TGF-ß-mediated macrophage responses, modulating synthesis of only a small fraction of TGF-ß-induced genes, including Itga5, Olfml3, and Fabp7. Our findings suggest a limited role for macrophage Smad7 in regulation of post-infarction inflammation and repair, and demonstrate that the anti-inflammatory effects of TGF-ß in macrophages are not restrained by endogenous Smad7 induction.


Assuntos
Infarto do Miocárdio , Proteína Smad7/metabolismo , Animais , Fibrose , Inflamação , Macrófagos/metabolismo , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Fenótipo , Proteína Smad7/genética , Fator de Crescimento Transformador beta/metabolismo
7.
Cells ; 11(9)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35563692

RESUMO

The adult mammalian heart contains abundant interstitial and perivascular fibroblasts that expand following injury and play a reparative role but also contribute to maladaptive fibrotic remodeling. Following myocardial infarction, cardiac fibroblasts undergo dynamic phenotypic transitions, contributing to the regulation of inflammatory, reparative, and angiogenic responses. This review manuscript discusses the mechanisms of regulation, roles and fate of fibroblasts in the infarcted heart. During the inflammatory phase of infarct healing, the release of alarmins by necrotic cells promotes a pro-inflammatory and matrix-degrading fibroblast phenotype that may contribute to leukocyte recruitment. The clearance of dead cells and matrix debris from the infarct stimulates anti-inflammatory pathways and activates transforming growth factor (TGF)-ß cascades, resulting in the conversion of fibroblasts to α-smooth muscle actin (α-SMA)-expressing myofibroblasts. Activated myofibroblasts secrete large amounts of matrix proteins and form a collagen-based scar that protects the infarcted ventricle from catastrophic complications, such as cardiac rupture. Moreover, infarct fibroblasts may also contribute to cardiac repair by stimulating angiogenesis. During scar maturation, fibroblasts disassemble α-SMA+ stress fibers and convert to specialized cells that may serve in scar maintenance. The prolonged activation of fibroblasts and myofibroblasts in the infarct border zone and in the remote remodeling myocardium may contribute to adverse remodeling and to the pathogenesis of heart failure. In addition to their phenotypic plasticity, fibroblasts exhibit remarkable heterogeneity. Subsets with distinct phenotypic profiles may be responsible for the wide range of functions of fibroblast populations in infarcted and remodeling hearts.


Assuntos
Infarto do Miocárdio , Miofibroblastos , Animais , Cicatriz/patologia , Fibroblastos/metabolismo , Mamíferos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905511

RESUMO

Repair of the infarcted heart requires TGF-ß/Smad3 signaling in cardiac myofibroblasts. However, TGF-ß-driven myofibroblast activation needs to be tightly regulated in order to prevent excessive fibrosis and adverse remodeling that may precipitate heart failure. We hypothesized that induction of the inhibitory Smad, Smad7, may restrain infarct myofibroblast activation, and we examined the molecular mechanisms of Smad7 actions. In a mouse model of nonreperfused infarction, Smad3 activation triggered Smad7 synthesis in α-SMA+ infarct myofibroblasts, but not in α-SMA-PDGFRα+ fibroblasts. Myofibroblast-specific Smad7 loss increased heart failure-related mortality, worsened dysfunction, and accentuated fibrosis in the infarct border zone and in the papillary muscles. Smad7 attenuated myofibroblast activation and reduced synthesis of structural and matricellular extracellular matrix proteins. Smad7 effects on TGF-ß cascades involved deactivation of Smad2/3 and non-Smad pathways, without any effects on TGF-ß receptor activity. Unbiased transcriptomic and proteomic analysis identified receptor tyrosine kinase signaling as a major target of Smad7. Smad7 interacted with ErbB2 in a TGF-ß-independent manner and restrained ErbB1/ErbB2 activation, suppressing fibroblast expression of fibrogenic proteases, integrins, and CD44. Smad7 induction in myofibroblasts serves as an endogenous TGF-ß-induced negative feedback mechanism that inhibits postinfarction fibrosis by restraining Smad-dependent and Smad-independent TGF-ß responses, and by suppressing TGF-ß-independent fibrogenic actions of ErbB2.


Assuntos
Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Miofibroblastos/metabolismo , Receptor ErbB-2/metabolismo , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Camundongos , Camundongos Knockout , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Receptor ErbB-2/genética , Proteína Smad7/genética , Fator de Crescimento Transformador beta/genética
9.
Matrix Biol ; 99: 18-42, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048934

RESUMO

Tissue injury results in profound alterations in the collagen network, associated with unfolding of the collagen triple helix, proteolytic degradation and generation of fragments. In the infarcted myocardium, changes in the collagen network are critically involved in the pathogenesis of left ventricular rupture, adverse remodeling and chronic dysfunction. We hypothesized that myocardial infarction is associated with temporally and spatially restricted patterns of collagen denaturation that may reflect distinct molecular mechanisms of collagen unfolding. We used a mouse model of non-reperfused myocardial infarction, and in vitro assays in fibroblast-populated collagen lattices. In healing infarcts, labeling with collagen hybridizing peptide (CHP) revealed two distinct patterns of collagen denaturation. During the inflammatory and proliferative phases of infarct healing, collagen denaturation was pericellular, localized in close proximity to macrophages and myofibroblasts. qPCR array analysis of genes associated with matrix remodeling showed that Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) is markedly upregulated in infarct macrophages and fibroblasts, suggesting its involvement in pericellular collagen denaturation. In vitro, MT1-MMP-mediated pericellular collagen denaturation is involved in cardiac fibroblast migration. The effects of MT1-MMP on collagen denaturation and fibroblast migration involve the catalytic site, and require hemopexin domain-mediated actions. In contrast, during the maturation phase of infarct healing, extensive collagen denaturation was noted in the hypocellular infarct, in the infarct border zone and in the mitral valve annulus, in the absence of MT1-MMP. In vitro, mechanical tension in attached collagen lattices was sufficient to induce peripheral collagen denaturation. Our study suggests that in healing infarcts, early pericellular collagen denaturation may be important for migration of macrophages and reparative myofibroblasts in the infarct. Extensive denaturation of collagen fibers is noted in mature scars, likely reflecting mechanical tension. Chronic collagen denaturation may increase susceptibility of the matrix to proteolysis, thus contributing to progressive cardiac dilation and post-infarction heart failure.


Assuntos
Metaloproteinase 14 da Matriz , Infarto do Miocárdio , Animais , Colágeno/metabolismo , Metaloproteinase 14 da Matriz/genética , Camundongos , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Proteólise
10.
Cell Signal ; 77: 109826, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160018

RESUMO

Most myocardial pathologic conditions are associated with cardiac fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix (ECM) proteins. Although replacement fibrosis plays a reparative role after myocardial infarction, excessive, unrestrained or dysregulated myocardial ECM deposition is associated with ventricular dysfunction, dysrhythmias and adverse prognosis in patients with heart failure. The members of the Transforming Growth Factor (TGF)-ß superfamily are critical regulators of cardiac repair, remodeling and fibrosis. TGF-ßs are released and activated in injured tissues, bind to their receptors and transduce signals in part through activation of cascades involving a family of intracellular effectors the receptor-activated Smads (R-Smads). This review manuscript summarizes our knowledge on the role of Smad signaling cascades in cardiac fibrosis. Smad3, the best-characterized member of the family plays a critical role in activation of a myofibroblast phenotype, stimulation of ECM synthesis, integrin expression and secretion of proteases and anti-proteases. In vivo, fibroblast Smad3 signaling is critically involved in scar organization and exerts matrix-preserving actions. Although Smad2 also regulates fibroblast function in vitro, its in vivo role in rodent models of cardiac fibrosis seems more limited. Very limited information is available on the potential involvement of the Smad1/5/8 cascade in cardiac fibrosis. Dissection of the cellular actions of Smads in cardiac fibrosis, and identification of patient subsets with overactive or dysregulated myocardial Smad-dependent fibrogenic responses are critical for design of successful therapeutic strategies in patients with fibrosis-associated heart failure.


Assuntos
Infarto do Miocárdio/patologia , Proteínas Smad/metabolismo , Animais , Diabetes Mellitus/patologia , Proteínas da Matriz Extracelular/metabolismo , Humanos , Infarto do Miocárdio/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Transdução de Sinais , Proteínas da Superfamília de TGF-beta/metabolismo
11.
Cardiovasc Drugs Ther ; 34(6): 849-863, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32902739

RESUMO

Heart failure exhibits remarkable pathophysiologic heterogeneity. A large body of evidence suggests that regardless of the underlying etiology, heart failure is associated with induction of cytokines and chemokines that may contribute to the pathogenesis of adverse remodeling, and systolic and diastolic dysfunction. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6 have been extensively implicated in the pathogenesis of heart failure. Inflammatory cytokines modulate phenotype and function of all myocardial cells, suppressing contractile function in cardiomyocytes, inducing inflammatory activation in macrophages, stimulating microvascular inflammation and dysfunction, and promoting a matrix-degrading phenotype in fibroblasts. Moreover, cytokine-induced growth factor synthesis may exert chronic fibrogenic actions contributing to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). In addition to their role in adverse cardiac remodeling, some inflammatory cytokines may also exert protective actions on cardiomyocytes under conditions of stress. Chemokines, such as CCL2, are also upregulated in failing hearts and may stimulate recruitment of pro-inflammatory leukocytes, promoting myocardial injury, fibrotic remodeling, and dysfunction. Although experimental evidence suggests that cytokine and chemokine targeting may hold therapeutic promise in heart failure, clinical translation remains challenging. This review manuscript summarizes our knowledge on the role of TNF-α, IL-1, IL-6, and CCL2 in the pathogenesis of heart failure, and discusses the promises and challenges of targeted anti-cytokine therapy. Dissection of protective and maladaptive cellular actions of cytokines in the failing heart, and identification of patient subsets with overactive or dysregulated myocardial inflammatory responses are required for design of successful therapeutic approaches.


Assuntos
Anti-Inflamatórios/uso terapêutico , Quimiocinas/antagonistas & inibidores , Citocinas/antagonistas & inibidores , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Terapia de Alvo Molecular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais , Pesquisa Translacional Biomédica , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
12.
Am J Physiol Heart Circ Physiol ; 319(5): H948-H964, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886000

RESUMO

In patients with myocardial infarction (MI), cardiac rupture is an uncommon but catastrophic complication. In the mouse model of nonreperfused MI, reported rupture rates are highly variable and depend not only on the genetic background and sex of animals but also on the method used for documentation of rupture. In most studies, diagnosis of cardiac rupture is based on visual inspection during autopsy; however, criteria are poorly defined. We performed systematic histopathological analysis of whole hearts from C57BL/6J mice dying after nonreperfused MI and evaluated the reliability of autopsy-based criteria in identification of rupture. Moreover, we compared the cell biological environment of the infarct between rupture-related and rupture-independent deaths. Histopathological analysis documented rupture in 50% of mice dying during the first week post-MI. Identification of a gross rupture site was highly specific but had low sensitivity; in contrast, hemothorax had high sensitivity but low specificity. Mice with rupture had lower myofibroblast infiltration, accentuated macrophage influx, and a trend toward reduced collagen content in the infarct. Male mice had increased mortality and higher incidence of rupture. However, infarct myeloid cells harvested from male and female mice at the peak of the incidence of rupture had comparable inflammatory gene expression. In conclusion, the reliability of autopsy in documentation of rupture in infarcted mice is dependent on the specific criteria used. Macrophage-driven inflammation and reduced activation of collagen-secreting reparative myofibroblasts may be involved in the pathogenesis of post-MI cardiac rupture.NEW & NOTEWORTHY We show that cardiac rupture accounts for 50% of deaths in C57BL/6J mice undergoing nonreperfused myocardial infarction protocols. Overestimation of rupture events in published studies likely reflects the low specificity of hemothorax as a criterion for documentation of rupture. In contrast, identification of a gross rupture site has high specificity and low sensitivity. We also show that mice dying of rupture have increased macrophage influx and attenuated myofibroblast infiltration in the infarct. These findings are consistent with a role for perturbations in the balance between inflammatory and reparative responses in the pathogenesis of postinfarction cardiac rupture. We also report that the male predilection for rupture in infarcted mice is not associated with increased inflammatory activation of myeloid cells.


Assuntos
Ruptura Cardíaca/patologia , Infarto do Miocárdio/patologia , Animais , Biópsia/normas , Colágeno/metabolismo , Feminino , Ruptura Cardíaca/etiologia , Aprendizado de Máquina , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Células Mieloides/patologia , Infarto do Miocárdio/complicações , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fatores Sexuais , Transcriptoma
13.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118703, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179057

RESUMO

The heart contains an abundant fibroblast population that may play a role in homeostasis, by maintaining the extracellular matrix (ECM) network, by regulating electrical impulse conduction, and by supporting survival and function of cardiomyocytes and vascular cells. Despite an explosion in our understanding of the role of fibroblasts in cardiac injury, the homeostatic functions of resident fibroblasts in adult hearts remain understudied. TGF-ß-mediated signaling through the receptor-activated Smads, Smad2 and Smad3 critically regulates fibroblast function. We hypothesized that baseline expression of Smad2/3 in fibroblasts may play an important role in cardiac homeostasis. Smad2 and Smad3 were constitutively expressed in normal mouse hearts and in cardiac fibroblasts. In cultured cardiac fibroblasts, Smad2 and Smad3 played distinct roles in regulation of baseline ECM gene synthesis. Smad3 knockdown attenuated collagen I, collagen IV and fibronectin mRNA synthesis and reduced expression of the matricellular protein thrombospondin-1. Smad2 knockdown on the other hand attenuated expression of collagen V mRNA and reduced synthesis of fibronectin, periostin and versican. In vivo, inducible fibroblast-specific Smad2 knockout mice and fibroblast-specific Smad3 knockout mice had normal heart rate, preserved cardiac geometry, ventricular systolic and diastolic function, and normal myocardial structure. Fibroblast-specific Smad3, but not Smad2 loss modestly but significantly reduced collagen content. Our findings suggest that fibroblast-specific Smad3, but not Smad2, may play a role in regulation of baseline collagen synthesis in adult hearts. However, at least short term, these changes do not have any impact on homeostatic cardiac function.


Assuntos
Matriz Extracelular/genética , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética , Animais , Colágeno/biossíntese , Colágeno/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Frequência Cardíaca/genética , Homeostase/genética , Humanos , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais/genética
14.
Front Cardiovasc Med ; 6: 140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620450

RESUMO

The members of the transforming growth factor ß (TGF-ß) superfamily are essential regulators of cell differentiation, phenotype and function, and have been implicated in the pathogenesis of many diseases. Myocardial infarction is associated with induction of several members of the superfamily, including TGF-ß1, TGF-ß2, TGF-ß3, bone morphogenetic protein (BMP)-2, BMP-4, BMP-10, growth differentiation factor (GDF)-8, GDF-11 and activin A. This manuscript reviews our current knowledge on the patterns and mechanisms of regulation and activation of TGF-ß superfamily members in the infarcted heart, and discusses their cellular actions and downstream signaling mechanisms. In the infarcted heart, TGF-ß isoforms modulate cardiomyocyte survival and hypertrophic responses, critically regulate immune cell function, activate fibroblasts, and stimulate a matrix-preserving program. BMP subfamily members have been suggested to exert both pro- and anti-inflammatory actions and may regulate fibrosis. Members of the GDF subfamily may also modulate survival and hypertrophy of cardiomyocytes and regulate inflammation. Important actions of TGF-ß superfamily members may be mediated through activation of Smad-dependent or non-Smad pathways. The critical role of TGF-ß signaling cascades in cardiac repair, remodeling, fibrosis, and regeneration may suggest attractive therapeutic targets for myocardial infarction patients. However, the pleiotropic, cell-specific, and context-dependent actions of TGF-ß superfamily members pose major challenges in therapeutic translation.

16.
Circ Res ; 125(1): 55-70, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31092129

RESUMO

RATIONALE: TGF (transforming growth factor)-ß is critically involved in myocardial injury, repair, and fibrosis, activating both Smad (small mothers against decapentaplegic)-dependent and non-Smad pathways. The in vivo role of TGF-ß signaling in regulation of macrophage function is poorly understood. We hypothesized that in the infarcted myocardium, activation of TGF-ß/Smad signaling in macrophages may regulate repair and remodeling. OBJECTIVE: To investigate the role of macrophage-specific TGF-ß Smad3 signaling in a mouse model of myocardial infarction and to dissect the mechanisms mediating Smad-dependent modulation of macrophage function. METHODS AND RESULTS: TGF-ßs markedly activated Smad3 in macrophages, without affecting Smad-independent pathways. Phagocytosis rapidly and directly activated macrophage Smad3, in the absence of active TGF-ß release. MyS3KO (myeloid cell-specific Smad3 knockout) mice had no baseline defects but exhibited increased late mortality and accentuated dilative postmyocardial infarction remodeling. Adverse outcome in infarcted MyS3KO mice was associated with perturbations in phagocytic activity, defective transition of macrophages to an anti-inflammatory phenotype, scar expansion, and accentuated apoptosis of border zone cardiomyocytes. In vitro, Smad3 null macrophages exhibited reduced expression of genes associated with eat-me signals, such as Mfge8 (milk fat globule-epidermal growth factor factor 8), and reduced capacity to produce the anti-inflammatory mediators IL (interleukin)-10 and TGF-ß1, and the angiogenic growth factor VEGF (vascular endothelial growth factor). Mfge8 partly rescued the phagocytic defect of Smad3 null macrophages, without affecting inflammatory activity. Impaired anti-inflammatory actions of Smad3 null macrophages were associated with marked attenuation of phagocytosis-induced PPAR (peroxisome proliferator-activated receptor) expression. MyS3KO mice had no significant alterations in microvascular density and interstitial fibrosis in remodeling myocardial segments. CONCLUSIONS: We demonstrate that Smad3 critically regulates function of infarct macrophages, by mediating acquisition of a phagocytic phenotype and by contributing to anti-inflammatory transition. Smad3-dependent actions in macrophages protect the infarcted heart from adverse remodeling.


Assuntos
Macrófagos/fisiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Fagocitose/fisiologia , Proteína Smad3/metabolismo , Animais , Células Cultivadas , Feminino , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/genética , Miócitos Cardíacos/fisiologia , Proteína Smad3/genética
17.
Circ Res ; 124(8): 1214-1227, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30686120

RESUMO

RATIONALE: The heart contains abundant interstitial and perivascular fibroblasts. Traditional views suggest that, under conditions of mechanical stress, cytokines, growth factors, and neurohumoral mediators stimulate fibroblast activation, inducing ECM (extracellular matrix) protein synthesis and promoting fibrosis and diastolic dysfunction. Members of the TGF (transforming growth factor)-ß family are upregulated and activated in the remodeling myocardium and modulate phenotype and function of all myocardial cell types through activation of intracellular effector molecules, the Smads (small mothers against decapentaplegic), and through Smad-independent pathways. OBJECTIVES: To examine the role of fibroblast-specific TGF-ß/Smad3 signaling in the remodeling pressure-overloaded myocardium. METHODS AND RESULTS: We examined the effects of cell-specific Smad3 loss in activated periostin-expressing myofibroblasts using a mouse model of cardiac pressure overload, induced through transverse aortic constriction. Surprisingly, FS3KO (myofibroblast-specific Smad3 knockout) mice exhibited accelerated systolic dysfunction after pressure overload, evidenced by an early 40% reduction in ejection fraction after 7 days of transverse aortic constriction. Accelerated systolic dysfunction in pressure-overloaded FS3KO mice was associated with accentuated matrix degradation and generation of collagen-derived matrikines, accompanied by cardiomyocyte myofibrillar loss and apoptosis, and by enhanced macrophage-driven inflammation. In vitro, TGF-ß1, TGF-ß2, and TGF-ß3 stimulated a Smad3-dependent matrix-preserving phenotype in cardiac fibroblasts, suppressing MMP (matrix metalloproteinase)-3 and MMP-8 synthesis and inducing TIMP (tissue inhibitor of metalloproteinases)-1. In vivo, administration of an MMP-8 inhibitor attenuated early systolic dysfunction in pressure-overloaded FS3KO mice, suggesting that the protective effects of activated cardiac myofibroblasts in the pressure-overloaded myocardium are, at least in part, because of suppression of MMPs and activation of a matrix-preserving program. MMP-8 stimulation induces a proinflammatory phenotype in isolated macrophages. CONCLUSIONS: In the pressure-overloaded myocardium, TGF-ß/Smad3-activated cardiac fibroblasts play an important protective role, preserving the ECM network, suppressing macrophage-driven inflammation, and attenuating cardiomyocyte injury. The protective actions of the myofibroblasts are mediated, at least in part, through Smad-dependent suppression of matrix-degrading proteases.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo , Proteína Smad3/metabolismo , Estresse Mecânico , Remodelação Ventricular , Animais , Moléculas de Adesão Celular/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Camundongos Knockout , Pressão , Proteína Smad3/genética , Volume Sistólico , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...